On the independence number of some random trees

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On subgraph number independence in trees

For finite graphs F and G, let Nr(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. I f g and c?? are families of graphs, it is natural to ask then whether or not the quantities NF(G), FE F, are linearly independent when G is restricted to Q. For example, if P = (K1, &} (where K, denotes the complete graph on n vertices) and 9 is the fa...

متن کامل

On the b-Independence Number of Sparse Random Graphs

Let graph G = (V,E) and integer b ≥ 1 be given. A set S ⊆ V is said to be b-independent if u, v ∈ S implies dG(u, v) > b where dG(u, v) is the shortest distance between u and v in G. The b-independence number αb(G) is the size of the largest b-independent subset of G. When b = 1 this reduces to the standard definition of independence number. We study this parameter in relation to the random gra...

متن کامل

On The Independence Number Of Random Interval Graphs

A random interval graph of order n is generated by picking 2n numbers X 1 : : : X 2n independently from the uniform distribution on 0; 1] and considering the collection of n intervals with extremities X 2i?1 and X 2i for i 2 f1;:::ng. The graph vertices correspond to intervals. Two vertices are connected if the corresponding intervals intersect. This paper characterizes the uctuations of the in...

متن کامل

On the Independence Number of Random Cubic Graphs

We show that as n —> oo, the independence number c*(G), for almost all 3-regular graphs G on n vertices, is at least (61og(3/2) — 2 — e)n, for any constant e > 0. We prove this by analyzing a greedy algorithm for finding independent sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2020

ISSN: 1083-589X

DOI: 10.1214/20-ecp345